Weiter mit Tracking durch Dritte

Besuchen Sie unsere Website mit externen Inhalten, personalisierter Werbung und Werbetracking durch Dritte. Details und Informationen zu Cookies, Verarbeitungszwecken sowie Ihrer jederzeitigen Widerrufsmöglichkeit finden Sie in der Datenschutzerklärung und in den Privatsphäre-Einstellungen.

Weiter mit dem PUR-Abo

Nutzen Sie unser Angebot ohne Werbetracking durch Dritte für 4,99 Euro/Monat. Kunden mit einem bestehenden Abo (Tageszeitung, e-Paper oder PLUS) zahlen nur 0,99 Euro/Monat. Informationen zur Datenverarbeitung im Rahmen des PUR-Abos finden Sie in der Datenschutzerklärung.

Zum Angebot Bereits PUR-Abonnent? Hier anmelden

Einwilligung: Durch das Klicken des "Akzeptieren und weiter"-Buttons stimmen Sie der Verarbeitung der auf Ihrem Gerät bzw. Ihrer Endeinrichtung gespeicherten Daten wie z.B. persönlichen Identifikatoren oder IP-Adressen für die beschriebenen Verarbeitungszwecke gem. § 25 Abs. 1 TTDSG sowie Art. 6 Abs. 1 lit. a DSGVO durch uns und unsere bis zu 220 Partner zu. Darüber hinaus nehmen Sie Kenntnis davon, dass mit ihrer Einwilligung ihre Daten auch in Staaten außerhalb der EU mit einem niedrigeren Datenschutz-Niveau verarbeitet werden können.

Tracking durch Dritte: Zur Finanzierung unseres journalistischen Angebots spielen wir Ihnen Werbung aus, die von Drittanbietern kommt. Zu diesem Zweck setzen diese Dienste Tracking-Technologien ein. Hierbei werden auf Ihrem Gerät Cookies gespeichert und ausgelesen oder Informationen wie die Gerätekennung abgerufen, um Anzeigen und Inhalte über verschiedene Websites hinweg basierend auf einem Profil und der Nutzungshistorie personalisiert auszuspielen.

Externe Inhalte: Zur Ergänzung unserer redaktionellen Texte, nutzen wir in unseren Angeboten externe Inhalte und Dienste Dritter („Embeds“) wie interaktive Grafiken, Videos oder Podcasts. Die Anbieter, von denen wir diese externen Inhalten und Dienste beziehen, können ggf. Informationen auf Ihrem Gerät speichern oder abrufen und Ihre personenbezogenen Daten erheben und verarbeiten.

Verarbeitungszwecke: Personalisierte Werbung mit Profilbildung, externe Inhalte anzeigen, Optimierung des Angebots (Nutzungsanalyse, Marktforschung, A/B-Testing, Inhaltsempfehlungen), technisch erforderliche Cookies oder vergleichbare Technologien. Die Verarbeitungszwecke für unsere Partner sind insbesondere:
Informationen auf einem Gerät speichern und/oder abrufen

Für die Ihnen angezeigten Verarbeitungszwecke können Cookies, Gerätekennungen oder andere Informationen auf Ihrem Gerät gespeichert oder abgerufen werden.

Personalisierte Anzeigen und Inhalte, Anzeigen und Inhaltsmessungen, Erkenntnisse über Zielgruppen und Produktentwicklungen

Anzeigen und Inhalte können basierend auf einem Profil personalisiert werden. Es können mehr Daten hinzugefügt werden, um Anzeigen und Inhalte besser zu personalisieren. Die Performance von Anzeigen und Inhalten kann gemessen werden. Erkenntnisse über Zielgruppen, die die Anzeigen und Inhalte betrachtet haben, können abgeleitet werden. Daten können verwendet werden, um Benutzerfreundlichkeit, Systeme und Software aufzubauen oder zu verbessern.

▌▉▍▉▉▍▉▌▌▉▍▉▌ ▉▌▌▉▍▉▌▌▉▍▉▍▉▍ ;▌▉▍▉▉▍▉▌▌▉▍▉▌
  1. Startseite
  2. Wissenschaft
  3. Atome fallen wie Bleikugeln

26.01.2005

Atome fallen wie Bleikugeln

"Wozu Socken? Sie schaffen nur Löcher!" 

Garching/Tübingen (mp). Vor etwa 400 Jahren hat Galileo Galilei in seinem berühmten Versuch auf dem Schiefen Turm von Pisa Gegenstände aus Blei, Gold und Holz fallen lassen und dabei festgestellt, dass sie alle zur gleichen Zeit am Fuße des Turms ankommen. Aus dem Befund, dass die Bewegung eines Körpers unter Einwirkung der Schwerkraft unabhängig von seiner Masse oder seiner Zusammensetzung ist, hat Albert Einstein den in der Physik als "Äquivalenzprinzip" bekannten Grundsatz formuliert und diesen als Ausgangspunkt für seine Überlegungen zur Gravitationstheorie gewählt.

Von besonders großem Interesse ist heute die Überprüfung des Äquivalenzprinzips auf atomarer Ebene, da entsprechende Experimente Hinweise dafür liefern können, wie die Einstein'sche Gravitationstheorie und die Quantentheorie weiterentwickelt und in eine einheitliche Beschreibung überführt werden können.

Garchinger und Tübinger Wissenschaftler haben nun eine moderne Variante des Galilei'schen Fallturmversuchs durchgeführt und das Äquivalenzprinzip für Quantenobjekte mittels eines Atominterferometers an einem "atomaren Springbrunnen" überprüft. Beim Vergleich der Fallbeschleunigung für zwei verschiedene Rubidiumisotope (Rb 85 und Rb 87) konnten die Forscher die Gültigkeit des Äquivalenzprinzips bis auf eine Genauigkeit von 2 zu 10 Millionen auf atomarem Niveau bestätigen. Ihre Ergebnisse haben sie in den Physical Review Letters veröffentlicht.

Das Äquivalenzprinzip markiert einen der wichtigsten Eckpfeiler der Gravitationstheorie. Deshalb soll es jetzt möglichst genau experimentell überprüft werden. Ergebnisse könnten Antworten auf eine der in der modernen Physik ungelösten Fragen liefern, nämlich wie man die beiden grundlegenden Theorien der Physik, die Quantentheorie und die Gravitationstheorie, in einheitlicher Weise beschreiben kann.

Garchinger und Tübinger Wissenschaftler haben nun das Äquivalenzprinzip mit Hilfe der Quantenmechanik für zwei verschiedene Rubidiumisotope untersucht. Dazu haben sie in einer magneto-optischen Falle etwa eine Milliarde Rubidiumatome gefangen und mittels Lichtkräften in vertikaler Richtung, entgegen der Schwerkraft, auf eine freie, nach oben gerichtete Flugbahn beschleunigt, ähnlich wie die Wasserstrahlen eines Springbrunnens. Nachdem die Atome ihren höchsten Punkt erreicht hatten, fielen sie, von der Erde angezogen, wieder nach unten. Für die Bestimmung der während des Fluges zurückgelegten Strecke wird die quantenmechanische Wellennatur der Atome ausgenutzt. Diese erlaubt es, die Bewegung der Atome mit einem Atominterferometer genau zu vermessen.

Bei einem konventionellen Interferometer werden zwei Lichtstrahlen aufgeteilt und wieder zur Überlagerung gebracht. Sind die beiden Strahlen in Phase, so addieren sich ihre Felder am Ort der Überlagerung und ein dort aufgestellter Detektor registriert ein helles Licht. Haben sie eine entgegengesetzte Phase, heben sich die Felder hingegen auf und am Ort des Detektors bleibt es dunkel.

Nach den Gesetzen der Quantenmechanik haben auch Atome Welleneigenschaften. In einem Atominterferometer beobachtet man ebenfalls das Auslöschen und Verstärken solcher Wellen. An dem Wechsel von "hellen" und "dunklen" Perioden lässt sich die Erdbeschleunigung der Atome auf ihrer Flugbahn bestimmen. Dabei entspricht der Abstand zwischen einem hellen und einem dunklen Bereich einer zurückgelegten Entfernung von etwa einem halben Millionstel Meter. Damit haben die Forscher ein sehr genaues "Lineal" zur Vermessung der atomaren Bewegung zur Hand.

Mit diesem "Lineal" haben die Forscher die Flugbahn der beiden Rubidiumisotope Rb 85 und Rb 87 verglichen und festgestellt, dass deren Beschleunigung auf Grund der Erdanziehung innerhalb einer relativen Genauigkeit von 1,7 x 10-7 übereinstimmt. In diesem Experiment konnte das Äquivalenzprinzip also auch für Quantenobjekte bestätigt werden. Die Forscher erwarten nun, dass sich mit technischen Verbesserungen zukünftig extrem genaue Überprüfungen des Äquivalenzprinzips für quantenmechanische Probeteilchen durchführen lassen.

Themen folgen

Die Diskussion ist geschlossen.